TWO AURONE GLYCOSIDES FROM THE FLOWERS OF PTEROCARPUS MARSUPIUM

POONAM MOHAN and T. JOSHI

Department of Chemistry, University of Allahabad 211 002, India

(Received in revised form 14 October 1988)

Key Word Index—*Pterocarpus marsupium*, Leguminosae, 4,6,4'-trihydroxyaurone 6-*O*-rhamnopyranoside; 4,6,4'-trihydroxy-7-methylaurone 4-*O*-rhamnopyranoside

Abstract—Two new aurone glycosides, 4,6,4'-trihydroxyaurone 6-O-rhamnopyranoside and 4,6,4'-trihydroxy-7-methylaurone 4-O-rhamnopyranoside have been isolated and identified from the flowers of *Pterocarpus marsupium*.

INTRODUCTION

Species of *Pterocarpus* are known to be rich in isoflavonoids [1] and terpenoid [2] derivatives. A flavonoid fraction of *P marsupium* bark was found to effectively reverse the alloxan-induced changes in the blood sugar level and the beta cell population in the pancreas [3]. From the ethanolic extract of the flowers of *P. marsupium* two new aurone glycosides have been isolated and identified This is the first report of aurones from *Pterocarpus* species.

RESULTS AND DISCUSSION

Compound 1, the yellow pigment analysed for $C_{21}H_{20}O_9$, mp 178°. It was found to be glycosidic in nature [4]. On acid hydrolysis (7% H_2SO_4) it gave an aglycone and rhamnose, identified by co-chromatography with an authentic sample and by ¹H NMR spectral analysis of the glycoside (a doublet at $\delta 1.20$ corresponding to three protons of rhamnosyl –Me group, broad signal at $\delta 3.5$ –3.82 for four sugar protons and a singlet at $\delta 4.2$ due to C-1" proton of rhamnose).

The aglycone, C₁₅H₁₀O₅, was characterized as an aurone on the basis of colour reactions [5] and UV spectral data [6]. ¹H NMR studies showed six aromatic protons suggesting a trisubstituted aurone A multiplet at δ 7.7–7.9 (2H) was due to C-2' and -6' and multiplet at δ 6.8–7.0 (2H) for C-3' and -5' protons. Two doublets at δ 6.1 and 6.3 (J = 2 Hz) were due to C-5 and C-7 protons, respectively There was a singlet at $\delta 6.67$ for benzylic proton (=CH-) [7] On acetylation it gave a triacetate, mp 62°, showing the presence of three hydroxyl groups. The positions of hydroxyls in the glycoside were confirmed by UV shifts [6]. The presence of a free -OH at C-4' position was confirmed by a large bathochromic shift in MeOH (ca 70 nm) with the addition of sodium methoxide and (68 nm) with sodium acetate. A large bathochromic shift in the $\lambda_{\max}^{\text{MeOH}}$ (ca 60 nm) with the addition of aluminium chloride confirmed the presence of a free -OH at position C-4 and the compound as 6-rhamnoside [8]

In the mass fragmentation pattern [7] two fragments at m/z 152 and m/z 118 showed that one hydroxyl group was

present in the B ring and the other in A ring. Thus the structure of 1 is confirmed; this a new glycoside but the aglycone has been reported from flowers of *Limonium* [9].

Compound 2, analysed for $C_{22}H_{22}O_9$, mp 168° , was found to be glycosidic in nature [4] and on hydrolysis it gave rhamnose (co-PC) and an aglycone which was shown to be an aurone by its colour reactions [5] and UV spectrum [6] ¹H NMR spectrum of the glycoside showed a doublet at $\delta 1.20$ corresponding to three protons of rhamnosyl –Me group

¹H NMR studies of the aglycone showed five aromatic protons suggesting a tetrasubstituted nuclei. The multiplet at δ 7.8–7.9 (2H) was attributed to C-2' and -6' and a muliplet at δ 6.88–7.10 (2H) to C-3' and -5' protons. A singlet at δ 6 25 (1H) was due to C-5 proton. The aglycone C₁₆H₁₂O₅, analysed for three hydroxyls (triacetate, IR 3374 cm⁻¹) and a ¹H NMR signal at δ 1.45 corresponding to 3H of the methyl group The two free –OH groups in the glycoside were shown to be at positions-4' and -6' by UV spectral shifts (bathochromic shift of 45 and 46 nm of band I with sodium methoxide and sodium acetate, respectively) [6]. No change in the $\lambda_{\rm max}^{\rm MeOH}$ with the addition of aluminium chloride confirmed that this compound was a 4-rhamnoside [8]. C-7 position of –Me group was confirmed by ¹H NMR studies.

1 $R^3 = H, R^1 = OH, R^2 = O$ -rha

2 $R^3 = Me$, $R^2 = OH$, $R^1 = O$ -rha

1288 Short Reports

Mass spectral data showed a molecular ion peak at 430 Two fragments at m/z 166 and 118 showed that one –OH was present in the B ring and a –OH and –Me were present in the A ring Thus 2 is a new compound, namely, 4,6,4'-trihydroxy-7-methylaurone 4-O-rhamnopyranoside The aglycones of 1 and 2 were further confirmed by synthesis. Aglycone of 1 was sythesized by condensing 4,6-dihydroxycoumaranone with p-hydroxybenzaldehyde [10] The aglycone of 2 was prepared from 4,6-dihydroxy-7-methylcoumaranone and p-hydroxybenzaldehyde.

EXPERIMENTAL

The flowers of *Pterocarpus marsupum* were identified by the botanical survey of India. The air-dried and crushed flowers were extracted with boiling EtOH. The concd extract (150 ml) fractionated into petrol and $\rm C_6H_6$. The remaining mother liquor was concd and chromatographed over a silica gel column. Compound 1 was extracted from CHCl₃–EtOAc fractions and compound 2 from EtOAc fraction. The compounds were crystallized from MeOH. Purity of the compounds was checked by PC and TLC

Compound 1, mp 178°, C₂₁H₂₀O₉ (Found C, 60 62, H 4 68 Calc. for $C_{21}H_{20}O_9$ C 60 57, H 4.80%) UV λ_{max}^{MeOH} nm 225, 245 (sh), 345 (sh), 392, +AlCl₃ 225, 245 (sh), 348 (sh), 452, +NaOMe 227, 247 (sh), 346 (sh), 462, +NaOAc 227, 248 (sh), 350, 460 IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹ 3368 (-OH), 1632 (>C=O), 730, 680 ¹H NMR (60 MHz, CDCl₃) δ 1 2 (3H, d, rhamnose -Me), 4.2 (1H, s, H-1"), 3 55-3 8 (4H, br, sugar protons), 7.7-7 9 (2H, m, H-2' and -6'), 6 1 (1H, d, J=2 Hz, H-5), 63 (1H, d, J=2 Hz, H-7), 674 (1H, s,=CH-), 6.8-70 (2H, m, H-3' and -5') MS (70 eV) m/z: 416 (M⁺), 270 (100), 269, 253, 242, 152, 124, 118. Acid hydrolysis (7% H_2SO_4) of 1 yielded an aglycone (R_f 0.75, solvent n-BuOH-HOAc-H₂O, 4 1 5, spray I₂ vapours) and rhamnose Aglycone of 1, mp 208°, C₁₅H₁₀O₅ (Found C, 67 1, H 3 5, Calc C, 66 67, H 3 7%) ¹H NMR (60 MHz, CDCl₃) δ : 6 15 (1H, d, H-5), 6 36 (1H, d, H-7), 6.75 (1H, s, =CH-), 7 7-7 9 (2H, m, H-2' and -6'), 68-70 (2H, m, H-3' and -5') Acetate (pyridine-Ac₂O, 24 hr at room temp.) mp 62° (Found C, 63 58, H 4 09, acetyl 32 59 Requires C, 63 63, H 4.04, acetyl 32 57%) Compound 2, mp 168°, C22H22O9 (Found C, 60.92, H 5 20 Calc for $C_{22}H_{22}O_9$ C 61 39, H 5 11%) UV λ_{max}^{MeOH} nm 220, 260, 350 (sh), 395, +NaOMe 225, 262 (sh), 360 (sh), 440, +NaOAc 222 (sh), 265 (sh), 359 (sh), 441, +AlCl₃ 222, 260, 352 (sh), 395. IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹ 3374 (-OH), 1638 (>C=O), 722, 668 ¹H NMR (60 MHz, CDCl₃) δ 1 2 (3H, d, rhamnose –Me), 4 3 (1H, s, H-1"), 3.4-3.6 (4H, br, sugar protons), 78-79 (2H, m, H-2' and -6'), 6.88-7 1 (2H, m, H-3' and -5'), 6 25 (1H, s, H-5), 1 45 (3H, s, -Me), 6 65 (1H, s, =CH-) MS (70 eV) m/z 430 (M⁺), 280 (100), 166, 138, 118 Acid hydrolysis of 2 with 7% H₂SO₄ gave an aglycone (R₁ 071, solvent n-BuOH-HOAc-H₂O 4 1 5) and rhamnose Aglycone of 2, mp 160°, C₁₆H₁₂O₅ (Found C, 68 2, H 4 10, Calc for C₁₆H₁₂O₅ C, 67 6, H 4 2%) Acetate (pyridine-Ac₂O, 24 hr at room temp) mp 92° (Found C, 64 31, H 4 42, acetyl 31 48, Calc C 64 39, acetyl 31 46%)

Synthesis of 4,6-4'-trihydroxy-7-methylaurone 2,4,6-trihydroxy-toluene. To phloroglucinaldehyde [11] (1g) in HOAc (100 cm³) Pd/C (5%, 15g) was added and the mixture shaken in an atmosphere of pure H_2 Solution was filtered and catalyst washed with HOAc From the extract HOAc was removed under red pres H_2O was added and the product was extracted in Et_2O The Et_2O extract was washed with NaHCO₃ and then extracted with Na₂CO₃ soln Acidification of the carbonate solution gave crystalline needles, mp 52'

4,6-dihydroxy-7-methyl coumaranone Dry HCl gas was passed for 3.5 hr into a stirred mixture of trihydroxytoluenc (80 g), 50 g chloroacetonitrile, 20 g powdered dry ZnCl₂ and 500 ml of dry Et₂O A second phase oily at first and later solid, separated The mix was left overnight, the solid separated and washed with fresh Et₂O. The yellow solid was dissolved in 400 ml ice H₂O and the solution heated under reflux for 1 hr. The solid which separated on cooling was boiled for 5 hr in a solution of 100 g KOAc in 20 ml of water. The hot solution was treated with decolorizing carbon and filtered. The product was charged over a silica gel column. From the ethyl acetate fraction yellow coloured needles were obtained, mp 140–145° (dec)

Synthesis of aurone Equimolecular amounts (100 mg) of 4,6-dihydroxy-7-methylcoumaranone and p-hydroxybenzaldehyde were dissolved in 5 ml HOAc and 0.2 ml cone HCl added [10] After 4 hr at room temp, the solution was poured into water and the product collected and recrystallized from aqueous EtOH, mp 160°

Acknowledgement- One of us (P M) is grateful to U G C , New Delhi, for awarding a J R F

REFERENCES

- 1. Mitra, J and Joshi, T (1983) Phytochemistry 22, 2328
- 2. Seshadri, T R (1972) Phytochemistry 11, 881
- Chakravarthy, B. K., Gupta, S., Gambhir, S. S. and Gode, K. D. (1980) Indian J. Pharmac. 12(a), 123
- 4. Molisch, H (1886) Monatsch Chem, 7, 108
- 5 Jurd, Leonard (1962), The Chemistry of Flavonoid Compounds Geissman, T. A., (ed.), p. 82 Pergamon Press, New York
- 6 Mabry, T J, Markham, K. R and Thomas, M B (1970) The Systematic Identification of Flavonoids Springer, Berlin
- 7 Nascimento, M C D, Dias, R L D V. and Mors, W B (1976) Phytochemistry 15, 1153
- 8 Geissman, T. A and Harborne, J B (1956) J Am Chem Soc
- 9. Asen, S and Plimma, J R (1972) Phytochemistry 11, 2601
- 10 Geissman, T A and Harborne, J B (1955) J Am. Chem Soc 77, 4622
- 11 Malkin, T et al (1931) J Am Chem. Soc 53, 239